The Potential For Introducing A Tram Service In Malta

Presentation, Friday 5th December 2008
David Simmons, Director - Rail Commercial, Halcrow Group Ltd

The Former Malta Tramway
The Former Malta Tramway Routes

Malta Old Train Route
Old Train and Tram Routes

What is Light Rail Transit?

• a broad spectrum of “steel wheel on steel rail” solutions
• medium cost/speed/capacity
• segregated alignment or prioritise over traffic, or mix with traffic
• typically 4,000-5,000 passengers/hour/direction
• street tramway solution most appropriate for Malta
Modern Street Tramway - Saarbrucken

• vehicles:
 - electrically powered
 - lightweight, low floor, articulated
 - capacity up to 250 passengers seated & standing
 - up to 35m long, 2.40-2.65m wide (bus 2.55m)
 - gradients to 10%, curve radius down to 18m
 - can out-perform general road traffic
 - costly due to small production runs

• track:
 - lightweight standard gauge (1.435m)
 - grooved steel track flush with surface
 - imposed load similar to HGV
System Characteristics

- **infrastructure:**
 - stops are low footpath-level platforms, easily integrated into streetscape
 - interchanges more elaborate with bus facilities

- **power supply:**
 - 750v DC overhead electric
 - wires need not be intrusive, supported by columns or from building fixings
 - need for power sub-stations along route

- **signalling**
 - driver’s line-of-sight operation as other road users
 - integrated with general traffic signalling at intersections

- **depot and operational control centre**
 - ideally located away from urban area
 - real-time monitoring of vehicle location and intersection performance

Fares and Ticketing

- consistent fare structure with bus system
- possible park & ride premium
- need for bus/tram integrated ticket
- driver in closed-off cab
- speedy multi-door loading/unloading
- pre-purchase tickets issued at machines or shops, additionally by conductors
- significant revenue protection required
Valletta – Sliema Route

- Valletta, Floriana, Sa Maison, Msida Creek, Ta’Xbiex, Strand, Sliema Ferry
- route alignment substantially determined
- high passenger volume potential
- Valletta terminus in vicinity of bus station
- largely segregated waterfront alignment
- constrained Triq Marina & Ta’Xbiex sections
 - mixed traffic operation but with tram priority
- importance of Msida Creek & Sliema bus interchanges
- need for enhanced pedestrian crossing facilities for Sliema esplanade
KNISJA SAN GEJTANU

THE AQUEDUCT
MRIEHEL NEAR MFSA

MRIEHEL
Valletta – Birkirkara & Ta’ Qali Route

- Valletta, Floriana, Hamrun, Fleur de Lys, Birkirkara, Attard, Ta’Qali
 - precise detail of localised routing still subject to detailed assessment
- potentially good demand corridor:
 - urban regeneration potential
 - encourages modal switch
 - improves public transport access to Ta’Qali National Stadium
- prospect of extensive park & ride facilities and suitable out-of-town depot location at Ta’Qali
- linked with Sliema route to create basis of a network:
 - passenger interchange opportunity
 - operational flexibility
- total route ~ 8.5km

Operations

- service assumptions:
 - operating hours 0600-2400h
 - peaks 0700-0900h and 1630-1830h
 - 10 minute maximum headway on each route
 - 5 minute headway at peak
 - journey times 15 mins Valletta - Sliema
 21 mins Valletta – Ta’Qali
 - 14 trams required to deliver service plus two spares
Capital and Operating Costs

- capital cost estimate:
 - in range €206 - €325 million
 - no significant engineering structures required
 - funding from public sector (EU) or from private sector (PPP)

- annual operating & maintenance cost estimate:
 - in range €7.2 - €7.5 million
 - approximately 50% maintenance, 50% labour & power
 - challenge is extent to which O&M costs can be met from farebox income

Scheme Beneficiaries

- users – faster, fully accessible, more comfortable, more reliable journey
- residents – air quality, property values, access to centres
- operator – farebox income, advertising revenue
- businesses on/near route – footfall due to proximity to tramstops
- businesses at main points served – local economic regeneration from improved access
- national government – transport policy delivery & enhanced visitor perception
- key issue is capturing the value of these benefits within the business case
Challenges in Tramway Development

• business case needs to be made for each route and for the network
 - environmental, economic regeneration, user benefits, policy delivery
• general acceptance of giving public transport priority over the car
 - implementing positive traffic management measures to speed the tram
• balancing maximising patronage by routing through dense urbanisation against service speed from segregated but less accessible routing
• design of on-street running sections requires significant trade-offs to be made in available road space along the route
 - ensuring adequate facilities for parking & loading
 - providing access to properties
• community acceptance of routing through consultation and debate
• planning complementary changes to bus services
• community understanding of extent of disruption during construction

Staged Development Programme

• develop proposals through staged feasibility studies: “building blocks”
 - avoid potentially abortive expenditure in system development
 - caters for scenario of the proposals failing to obtain ongoing support through:
 • lack of political policy imperative
 • community opposition
• first tasks:
 - detailed patronage & revenue study
 - start building the business case
 - full topographic survey of routes
 - “prove” routes technically by preliminary alignment design using firm design criteria
 - frontager survey of parking, loading & access needs
• realistic timescale for planning, authorisation, funding and construction ~ 10 years
The Potential For Introducing A Tram Service In Malta

Presentation, Friday 5th December 2008
David Simmons, Director - Rail Commercial, Halcrow Group Ltd